If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-23X+16(2X)=0
We add all the numbers together, and all the variables
X^2+139X=0
a = 1; b = 139; c = 0;
Δ = b2-4ac
Δ = 1392-4·1·0
Δ = 19321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19321}=139$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(139)-139}{2*1}=\frac{-278}{2} =-139 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(139)+139}{2*1}=\frac{0}{2} =0 $
| 6(2x+8)=132 | | 5n+7(n+3n)=88 | | w/5+13=24 | | 6x-9+5x-3=-1 | | 7(5g+8)/2=13 | | 2500x^2=4900 | | 12=x(-9) | | x⋅-33=-8 | | 7/x=10/18 | | 5(8+2)=5x | | 4(x-7)+8(-6x+1)=24 | | 8+2x+3-3=2x+1 | | (2y)+y+(y-0.2y)=35700 | | 5(8+2)=10x | | 15(8+2)=10x | | 5b-6=26 | | 2x-24=x+5=180 | | 3/4-7x=12 | | -4-3m+3m^2=-m^2-10m+3 | | 8x+10=6x+30=180 | | x-3=8x+3=180 | | -10x+4=2x+8-10x | | x+5=x-13=180 | | 7x-30=6x-10=180 | | -10.2=-0.003x | | y^2-6y+8y-7=0 | | 7/17=1v/8 | | 7/17=v/8 | | L=0.29t+51 | | 8x-7=9x-28=180 | | x⋅(2+4)=18 | | 7x+9=9x+5=180 |